Braiding operator via quantum cluster algebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braiding via Geometric Lie Algebra Actions

We introduce the idea of a geometric categorical Lie algebra action on derived categories of coherent sheaves. The main result is that such an action induces an action of the braid group associated to the Lie algebra. The same proof shows that strong categorical actions in the sense of Khovanov-Lauda and Rouquier also lead to braid group actions. As an example, we construct an action of Artin’s...

متن کامل

The operator algebra approach to quantum groups.

A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory.

متن کامل

The Operator Algebra of the Quantum Relativistic Oscillator

The operator algebras of a new family of relativistic geometric models of the relativistic oscillator [1] are studied. It is shown that, generally, the operator of number of quanta and the pair of the shift operators of each model are the generators of a non-unitary representation of the so(1, 2) algebra, except a special case when this algebra becomes the standard one of the non-relativistic h...

متن کامل

Indefinite-metric quantum field theory and operator algebra

It is often inevitable to introduce an indefinite-metric space in quantum field theory. There is a problem to determine the metric structure of a given representation space of field operators. We show the systematic method to determine such indefinite-metric explicitly. At first, we choose a new involution ∗ of field operators instead of the original involution † such that there is a Hilbert sp...

متن کامل

Superconformal Quantum Mechanics via Wigner-Heisenberg Algebra

We show the natural relation between the Wigner Hamiltonian and the conformal Hamiltonian. It is presented a model in (super)conformal quantum mechanics with (super)conformal symmetry in the Wigner-Heisenberg algebra picture [x, px] = i(1 + cP) (P being the parity operator). In this context, the energy spectrum, the Casimir operator, creation and annihilation operators are defined. This superco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2014

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/47/47/474006